Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling.

نویسندگان

  • Sushmita Gupta
  • Raju Bharalee
  • Priyadarshini Bhorali
  • Sourabh K Das
  • Prasenjit Bhagawati
  • Tirthankar Bandyopadhyay
  • Bornali Gohain
  • Niraj Agarwal
  • Parveen Ahmed
  • Sangeeta Borchetia
  • M C Kalita
  • A K Handique
  • Sudripta Das
چکیده

A cDNA-AFLP approach was used to identify transcript and/or genes specifically expressed in response to drought in tea. Drought was artificially induced and whole genome transcript profiling was done at three different stages-6 days before wilting, 3 days before wilting and at wilting stage of both tolerant and susceptible cultivars, and genetic differences was thus visualized as polymorphisms in the transcriptome. The cDNA-AFLP technique allowed genes and transcripts to be identified in the tolerant genotype (TV-23) whose expression is responsive to drought stress. The cluster analysis revealed two types of clustering-type I separated the tolerant and susceptible cultivar, whereas type II separated the time point of sample and this may be grouped as early and late responsive transcripts. 108 transcript derived fragments were identified as differentially expressed in tolerant genotypes of which 89 sequences could be obtained. Fifty-nine of them showed homology in the public databases. Functional ontology showed genes related to carbohydrate metabolism, response to stress, protein modification process and translation. Cluster I includes five fragments and cluster II includes 25 fragments. Other genes strongly expressed in response to drought in tolerant genotype would help us in identifying and determining the genetic basis of mechanisms involved in conferring drought tolerance in tea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Application of a Non-Radioactive DD-AFLP Method for Profiling of Aeluropus lagopoides Differentially Expressed Transcripts under Salinity or Drought Conditions

Aeluropus lagopoides is a salt and drought tolerant grass from Poaceae family, distributed widely in arid regions. There is almost no information about the genetics or genome of this close relative of wheat that stands harsh conditions of deserts. Differential Display Amplified fragment length polymorphism (DD-AFLP) led to the improvement of a non-radioactive method for which many parameters we...

متن کامل

Identification of Differentially Expressed Genes by
cDNA-AFLP Technique in Response to Drought Stress
in Triticum durum.

Drought is the single largest abiotic stress factor leading to reduced crop yields. The identification of differentially expressed genes and the understanding of their functions in environmentally stressful conditions are essential to improve drought tolerance. Transcriptomics is a powerful approach for the global analysis of molecular mechanisms under abiotic stress. To identify genes that are...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

شناسایی رونوشت‌های با افزایش تظاهر در رقم برنج (Oryza sativa L.) مقاوم به تنش شوری با استفاده از تکنیک cDNA-AFLP

      Salt stress is one of the main abiotic stresses for rice that causes negative effects on its growth and productivity. In present study, effects of salt stress on differential gene expression of some genes which are responsible in salt stress were investigated in two rice tolerant and sensitive genotypes (FL478 and IR29) by applying cDNA-AFLP technique. Among the TDFs (Transcript Derived F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biotechnology

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 2013